Строительство дач
Отделочные работы
Песок карьерный мытый
Щебень известняковый
Гранитный щебень
Коттеджные поселки
Ландшафтное проектирование
Архитектурное проектирование
Проектирование канализации
Реконстукция зданий

СТРОИТЕЛЬНЫЕ РАБОТЫ

Чем отличается конденсатор пусковой от рабочего


Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙ ПУСКОВОЙ
Где применяется В цепи рабочих обмоток асинхронного двигателя В пусковой цепи
Выполняемые функции Создание вращающегося электромагнитного поля для работы электромотора Сдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работы От включения до окончания работы Во время запуска до выхода на нужный режим.
Тип конденсатора МБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающего МБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Разница между конденсатором и суперконденсатором / ультраконденсатором

Разница между конденсатором и суперконденсатором / ультраконденсатором

Как суперконденсатор, так и обычные конденсаторы хранят заряд в виде электростатического поля. Они являются пассивными компонентами, в то время как супер емкостный тип полярных конденсаторов. Хотя функция обычного конденсатора и ультраконденсатора одинакова для накопления заряда, между ними есть некоторая разница, которую мы обсудим следующим образом.

Конденсатор

Конденсатор - это двухполюсный пассивный электронный компонент, который накапливает заряд в виде электрического поля между его металлическими пластинами. он состоит из двух металлических пластин (электроды в виде анода и катода), разделенных изолятором, известным как диэлектрик .

Когда напряжение источника подается на две клеммы конденсатора, ток хочет протекать через изолирующий материал, но он противодействует потоку электронов.Когда напряжение на клемме конденсатора равно приложенному напряжению, изоляционная среда все еще противостоит потоку электронов. Это сопротивление сопротивлению вносит изменения, которые создают эффект для накопления энергии в виде электростатического поля.

Суперконденсатор

Суперконденсатор

также известен как Super Cap , Двухслойный конденсатор или Ultra-конденсатор . Электроды суперконденсатора покрыты активированным углем в качестве материала электрода.Разделитель используется между анодом и катодом в суперконденсаторе, тогда как диэлектрические материалы используются в обычном конденсаторе.

Суперконденсаторы хранят заряд, используя электростатическую двухслойную емкость ( EDLC ) или электрохимическую псевдоемкость , или обе гибридные емкости .

Суперконденсаторы изготовлены из металлической фольги (электроды), каждый из которых состоит из активированного угля . Эти пленки сэндвич разделитель между ними.Сепаратор представляет собой ионопроницаемую мембрану, такую ​​как графен (используется в современном суперконденсаторе), которая обеспечивает изоляцию и обмен ионов электролита между электродами.

Полезно знать:

Суперконденсаторы рассматриваются между конденсаторами и батареями . Основная причина в том, что суперконденсатор заряжается очень быстро, как конденсатор, и его емкость высокая, а скорость разряда медленная, как у батареи.

Основные различия между конденсаторами и суперконденсаторами

Существуют ключевые различия между конденсатором и ультраконденсатором, которые показаны в приведенной ниже таблице в качестве сравнения.

01-го конденсатора 9-го поколения 9-образные конденсаторы 9-го типа 9-образные конденсаторы 9-го типа 9-образные конденсаторы 9-го типа 9-образные конденсаторы 9-го типа 9-конденсаторные -конденсаторы 9-го типа.
Характеристики Конденсатор Суперконденсатор
Конструкция Конденсатор представляет собой устройство с двумя металлическими клеммами (электродами) с диэлектрической средой между ними. Электрическая энергия накапливается в электростатическом поле в нем. Supercapacitoir - тип полярного конденсатора, и вместо диэлектрика используется электролитический раствор. Активированный уголь используется на электродах для увеличения площади.
Определение Конденсатор накапливает потенциальную энергию в форме электрического поля (электростатически) и выделяет в цепь в виде электрической энергии. Суперконденсатор находится между конденсатором и аккумулятором. Также известный как Супер Cap, Двухслойный Конденсатор или Ультра-конденсатор. Суперконденсатор имеет очень высокую емкость и низкое номинальное напряжение по сравнению с обычным конденсатором.
Работающий Конденсатор запасает энергию в виде электрического поля. Суперконденсатор накапливает энергию между ионами электролита и электрода в двойном слое заряда.
Типы
  • Электролитические
  • Конденсаторы,
  • Пленочные конденсаторы,
  • Тантал,
  • Интегрированный конденсатор
  • Электростатические двухслойные конденсаторы
Диэлектрический материал

Оксид алюминия, полимерные пленки или керамика используются в качестве конденсатора в качестве диэлектрической среды между электродами.

В суперконденсаторе в качестве среды используется активированный уголь. При подаче напряжения создается двойное электрическое поле, которое действует как диэлектрическая среда.

Время зарядки / разрядки Зарядка и разрядка обычного конденсатора нормальны по сравнению с суперконденсатором, то есть 10-3-10-6 секунд. Суперконденсаторы могут доставлять заряд намного быстрее, чем аккумулятор, и хранить заряд больше, чем электролитический конденсатор на единицу объема. Вот почему он рассматривается между батареей и электролитическим конденсатором.
Эффективность зарядки / разрядки > 0,95 0,85 - 0,98
Рабочая температура от -20 до 65 ° C (от -4 до 149 ° F) от -40 до 65 ° C (- 40 - 149 ° F)
Энергия <0,1 Вт / кг 1-10 Вт / кг
Плотность энергии Низкая Очень высокая
Удельная мощность До 100 000 Вт / кг До 10 000 Вт / кг
Стоимость Низкий Высокий
Преимущества
  • Позволяет избежать чрезмерного энергопотребления
  • Меньше разряд батареи из-за конденсатора
  • Высокая плотность интеграции
  • Управление реальной и реактивной мощностью
  • Долговечный жизненный цикл
  • Хранение высокой энергии
  • Время быстрой зарядки и разрядки
  • Высокая
  • Токи нагрузки
Применения
  • Аккумуляторная электрическая отвертка, которая заряжается за несколько минут.
  • Светодиодные фонарики в цифровых камерах.
  • Для стабилизации питания в ноутбуках, портативных устройствах и т. Д.
  • Источник бесперебойного питания (ИБП), заменяющий батареи электролитических конденсаторов.
  • Суперконденсаторы используются в микросхемах, оперативной памяти, CMOS, часах и микрокомпьютерах и т. Д.

Похожие сообщения:

.
Какова роль конденсатора в цепи переменного и постоянного тока? Электротехника

Какова роль конденсатора в цепи переменного и постоянного тока?

Очень короткими словами (подробное описание и публикация ниже)

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды по мере изменения тока и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, однажды заряженный от приложенного напряжения, действует как размыкающий переключатель.

Какова роль конденсатора в цепи переменного и постоянного тока?

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой двухполюсное электрическое устройство, используемое для хранения электрической энергии в форме электрического поля между двумя пластинами. Он также известен как конденсатор, и единицей измерения его емкости является Фарад «F», где Фарад - это большая единица емкости, поэтому в настоящее время они используют микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба хранят электрическую энергию. Конденсатор - намного более простое устройство, которое не может производить новые электроны, но сохраняет их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (таким как вощеная бумага, слюда и керамика), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для накопления заряда и быстрого разряда в нагрузке.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Ниже приведен электрический эквивалентный символ различных типов конденсаторов :

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но, , знаете ли вы, что такое емкость? емкость - это способность конденсатора сохранять заряд в нем. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Разрыв между пластинами
  • Диэлектрическая проницаемость изоляционного материала

Похожие сообщения:

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, кондиционирование, коррекция коэффициента мощности, Осцилляторы и фильтрация.

В этом уроке мы объясним вам, как вы можете использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронную схему:

  • Конденсатор серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Похожие сообщения: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и сборка конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), ток начинает течь и продолжает распространяться до тех пор, пока напряжение не станет отрицательным и положительным (Анод и Катодные) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор через небольшую нагрузку, он начинает подавать напряжение (накопленную энергию) на эту нагрузку, пока конденсатор не разрядится полностью.

Конденсатор имеет различные формы, и его значение измеряется в Фарадах (F). Конденсаторы используются в системах переменного и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость - это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда один источник напряжения вольт подключен к его клемме.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = Емкость в Фарадах (F)
  • Q = Электрические заряды в Coul V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения - объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим последние типы конденсаторов в другом посте, поскольку он не связан с вопросом).

Похожие сообщения:

Конденсаторы в серии

Как подключить конденсаторы в серии?

Последовательно, ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, необходимо соединить их последовательно, как показано на рисунке ниже,

При последовательном подключении конденсаторов общая емкость уменьшается.Следовательно, соединение последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T 901 = + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной цепи, мы применим закон напряжения Кирхгофа (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th №.конденсатора, соединенного последовательно,

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость вышеупомянутая схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14.7

C T = 3.19 мкФ

Параллельные конденсаторы

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключен к источнику, как вы можете видеть на рисунке ниже,

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, благодаря этому площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как

I = C (dV / dt)

Итак,

Решая вышеприведенное уравнение

C T = C 1 + C 2 + C 3

А, для n th нет.конденсатора, подключенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете найти емкость цепи по: используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Похожие сообщения:

Полярный и неполярный конденсатор

Неполярный конденсатор: (Используется как в системах переменного, так и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Они могут быть подключены к источнику питания в любом направлении, и их емкость не влияет на изменение полярности.

Polar Capacitor: (Используется только в цепях и системах постоянного тока)

Этот тип конденсаторов чувствителен к их полярности и может использоваться только в системах и сетях постоянного тока. Полярные конденсаторы не работают в системе переменного тока из-за изменения полярности после каждого полупериода питания переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока ниже.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких цепях конденсатор соединен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют энергию. Они просто принимают мощность в одном цикле и передают ее в другом цикле нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями энергии.

Асинхронные двигатели с разделенной фазой:

Конденсаторы также используются в асинхронном двигателе для разделения однофазного питания на двухфазное питание для создания вращающегося магнитного поля в роторе для захвата этого поля.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, для работы которых требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Существует множество преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он выдает реактивную мощность, которая ранее поступала от энергосистемы, следовательно, он снижает потери и повышает эффективность системы.

Конденсаторы в цепях переменного тока

Как подключить конденсаторы в цепях переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не станет равным напряжению питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после того, как он полностью зарядится.

И, когда вы подключаете конденсатор к источнику переменного тока, он заряжается и разряжается непрерывно, из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите фазовую диаграмму идеальной конденсаторной цепи переменного тока, вы можете заметить, что ток опережает напряжение на 90⁰.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как,

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное сопротивление в цепи переменного тока .

Поскольку мы знаем, что I = dQ / dt и Q = CV

А, входное переменное напряжение в вышеуказанной цепи будет выражаться как,

В = V м Sin вес

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференциации)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где, w = 2πf и V м / I м = X c )

Емкостная реактивность (X c ) =

Теперь для расчета емкостное сопротивление вышеупомянутой цепи,

Xc = 1 / 2π (50) (10)

Xc = 3183.09 Ω

Похожие сообщения: В чем разница между аккумулятором и конденсатором?

Роль конденсаторов в цепях постоянного тока

Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование - преобразование переменного тока в постоянный источник питания при выпрямлении (например, мостовой выпрямитель). Когда мощность переменного тока преобразуется в флуктуирующую (с пульсациями, т.е. не в устойчивом состоянии с помощью выпрямительных цепей), мощность постоянного тока (пульсирующий постоянный ток), чтобы сгладить и отфильтровать эти пульсации и флуктуации, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения системы и требуемого тока нагрузки.

Разъединяющий конденсатор:

Разъединяющий конденсатор используется, где мы должны разъединить две электронные схемы. Другими словами, шум, создаваемый одной цепью, основан на развязывающем конденсаторе, и это не влияет на работу другой цепи.

Соединительный конденсатор:

Как мы знаем, конденсатор блокирует постоянный ток и пропускает через него переменный ток (мы обсудим это на следующем занятии, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в цепях фильтра для той же цели). Его значение рассчитывается таким образом, что его реактивное сопротивление минимизируется на основе частоты, которую мы хотим пройти через него. Соединительный конденсатор также используется в фильтрах (схемах удаления пульсаций, таких как RC-фильтры) для разделения сигнала переменного и постоянного тока и удаляет пульсации из пульсирующего напряжения питания постоянного тока для преобразования его в чистое напряжение переменного тока после выпрямления.

Конденсаторные основы, рабочие и различные типы конденсаторов с их применениями в цепях

Конденсаторы - слово, по-видимому, предлагает идею емкостью , что в соответствии со словарем означает «способность удерживать что-то». Это ровно , что делает конденсатор - он держит электрический заряд. Но что делает его общим компонентом почти во всех электронных схемах? Давайте разберем материал за конденсаторами, чтобы понять, что он делает и как их можно использовать в этой статье.

Что такое конденсатор?

Конденсатор в своей наиболее примитивной форме состоит из двух проводящих пластин, разделенных диэлектрической средой. Термин диэлектрик - это просто причудливое слово для изолятора, который может быть поляризован, то есть образовывать отрицательные и положительные заряды на противоположных гранях. Когда напряжение подается на эти две пластины, ток проходит через проводящие пластины. Одна сторона получает положительный заряд (недостаток электронов), а другая сторона получает отрицательный заряд (избыток электронов).Мы все знакомы с тем фактом, что в отличие от зарядов притягиваются, поэтому, поскольку пластины заряжены противоположно, заряды на пластинах притягиваются.

Помните, что между пластинами имеется изолятор , поэтому заряды не могут «течь», чтобы уравновесить друг друга, и (в идеале) застряли в состоянии взаимного притяжения и остаются на месте. И именно так конденсаторы выполняют свою основную функцию - удержание или хранение заряда.

Символ конденсаторов

Поскольку конденсаторы имеют две параллельные металлические пластины, как обсуждалось выше, их символьный вид представляет собой то же самое.По крайней мере, легко нарисовать

В практическом случае конденсаторы - это уже не просто две пластины с зазором между ними, а в случае алюминиевых электролитов две пластины принимают форму металлической фольги, свернутой с прокладкой между ними в трубке.

Второй набор символов обозначает поляризованные конденсаторы, то есть те, которые определили положительные и отрицательные клеммы внутренней конструкцией. Случайное изменение положения этих терминалов почти наверняка приведет к впечатляющему отказу (особенно для более крупных образцов), выбросу кусков фольги и бумажных счетчиков с места повреждения и в большинстве случаев пахнущему очень плохо.

Емкость и номинальное напряжение для конденсатора

Конденсаторы измеряются в Фарад ; он назван в честь известного британского электрохимика Майкла Фарадея. Единица емкости, обозначающая кулон на вольт. Кулон (произносится как «koo-lom») - это единица S.I. для заряда, а вольт, как мы знаем, это единица измерения напряжения или разности потенциалов. Это делает Фарад количеством заряда, хранимым на вольт разности потенциалов.Этот простой способ математического взгляда на конденсатор предоставляет широкий спектр интерпретаций, что проявляется во многих смертельно сложных математических уравнениях, таких как интегралы, экспоненты и векторы, которые мы, инженеры, будем использовать при работе с конденсаторами, что выходит далеко за рамки Объем этой статьи. Однако в статье

мы немного разберемся с интересной математикой, которая поможет нам проектировать схемы с конденсаторами.

Конечно, Фарад (один кулон на вольт) является очень большой единицей для большинства практических целей (поскольку сам кулон является довольно большой величиной заряда, как вы, возможно, уже знаете), поэтому большинство конденсаторов (кроме очень больших) ) измеряются в микрофарадах или в миллионных долях (0.000001) Фарада. Предположим, у вас есть конденсатор, который читает 25V 10uF (префикс «u» означает микро, это искажение греческого символа µ («му»), означающего «микро») на пластиковой наружной крышке. Поскольку колпачок (в электронном мире - это конденсаторы) рассчитан на 10 мкФ, на его клеммах может храниться заряд в десять микрокулонов (то есть десять миллионных долей кулона, 0,000010 С) на вольт напряжения. Это означает, что при максимальном напряжении 25 В конденсатор может удерживать заряд 25 В x 10 мкФ, что составляет 0.000250 кулонов.

Помните, я сказал «максимальное» напряжение. Максимальное напряжение, пожалуй, самый важный рейтинг на конденсаторе. Он говорит вам, какое напряжение конденсатор может выдержать на своих клеммах, прежде чем он пойдет KABOOM ………!

Работа конденсатора

По сути, внутри конденсатора происходит то, что изолятор между этими пластинами подвергается процессу, называемому «пробой диэлектрика», то есть изолятор больше не может изолировать, поскольку напряжение на изоляторе слишком велико, чтобы он мог оставаться изолятором. ,Основная физика несколько выходит за рамки, но все, что вам нужно знать, чтобы понять, почему это происходит, это то, что ни один изолятор не является префектом, то есть до определенного момента. Даже самый сильный мост разрушается, если он перегружен. То, что здесь происходит, похоже. Чтобы уменьшить пробой, вы можете увеличить зазор между двумя пластинами, но это связано с компромиссом - уменьшенной емкостью, так как пластины расположены дальше друг от друга, и заряды не притягиваются так сильно, как при приближении - во многом как как ведут себя магниты.

Хорошее эмпирическое правило - использовать колпачки, рассчитанные на напряжение, превышающее на 50% то, что может ожидать ваша схема. Это оставляет широкий запас прочности. Например, если вам нужен колпачок для разъединения (не беспокойтесь, разъединение объясняется далее в статье) шины питания 12 В, вы можете избежать использования конденсатора 16 В, но рекомендуется использовать конденсатор 25 В, так как он дает вам широкий запас прочности. Хорошо, вы узнали это !! Да, 25 В, конечно, не на 25% больше, чем 12 В, но 18 В не является стандартным значением конденсатора - вы не найдете ни одного с таким номинальным напряжением.Ближайший 25В.

Различные типы конденсаторов

Причиной диапазонов пробивного напряжения является материал, используемый в качестве диэлектрика, который также является основой для классификации конденсаторов:

Алюминиевые электролитические конденсаторы

Это, пожалуй, самые узнаваемые типов конденсаторов . Они поставляются в отличительных металлических банках с пластиковой оболочкой, с четко обозначенными значениями напряжения и емкости и белой полосой для обозначения катода.Название происходит от того факта, что, как упомянуто выше, «пластины» сделаны из химически травленой алюминиевой фольги. Процесс травления делает алюминий пористым (почти как губка) и значительно увеличивает площадь его поверхности, что увеличивает емкость. Диэлектрик представляет собой тонкий слой оксида алюминия. Эти конденсаторы заполнены маслом, которое действует как электролит, отсюда и название. Электролитические конденсаторы поляризованы из-за их внутренней конструкции. Они имеют большую емкость по сравнению с другими членами семейства конденсаторов, но гораздо более низкие напряжения.Вы можете ожидать, что электролитический электролит от 0,1 мкФ до монстров, таких как 100 мФ, и с номинальным напряжением от нескольких вольт до примерно 500 В. Их внутренние сопротивления, однако, имеют тенденцию быть высокими.

СТОРОНА ПРИМЕЧАНИЕ: Внутреннее сопротивление в конденсаторах обусловлено материалами, из которых изготовлен колпачок - например, сопротивлением алюминиевой фольги или сопротивлением выводов.

Керамические конденсаторы

Это колпачки с керамическим диэлектриком.Поскольку предел пробоя керамического диэлектрика достаточно высок, вы можете ожидать появления керамических колпачков с невероятными напряжениями пробоя, такими как 10 кВ. Однако емкость имеет тенденцию быть низкой, в диапазоне от пикофарад (0,000000000001F) до нескольких десятков микрофарад. Как правило, они намного меньше, чем других типов конденсаторов , как показано на рисунке. Они также имеют очень маленькие внутренние сопротивления.

Идентификация керамических конденсаторов

Значение керамической емкости не будет прямо упомянуто на керамическом конденсаторе.0 равно 0.

Номинальное напряжение конденсатора можно найти с помощью строки под этим кодом. Если есть линия, то значение напряжения составляет 50/100 В, если линии нет, то оно составляет 500 В.

Ниже приведены наиболее часто используемые значения конденсаторов и их преобразование в Пико Фарад, Нано Фарад и Микрофарад.

код

Picofarad (pF)

Нанофарад (нФ)

Микрофарад (мкФ)

100

10

0.01

0,00001

150

15

0,015

0,000015

220

22

0,022

0,000022

330

33

0.033

0,000033

470

47

0,047

0,000047

331

330

0,33

0,00033

821

820

0.82

0,00082

102

1000

1,0

0,001

152

1500

1,5

0,0015

202

2000

2.0

0,002

502

5000

5,0

0,005

103

10000

10

0,01

683

68000

68

0.068

104

100000

100

0,1

154

150000

150

0,15

334

330000

330

0.33

684

680000

680

0,68

105

1000000

1000

1,0

335

3300000

3300

3.3

Пленочные конденсаторы

Как следует из названия, диэлектрик в этих конденсаторах представляет собой пластиковую пленку, часто знакомую пластику, такую ​​как майлар и полиэстер. Они имеют те же свойства, что и керамические колпачки, высокие пробивные напряжения (из-за поведения пластиковых полимеров) и низкие емкости. Разница лишь в том, что они имеют тенденцию быть немного больше, хотя внешне они похожи на керамические колпачки. Внутреннее сопротивление сравнимо с керамическими крышками.

Танталовые и ниобиевые конденсаторы

Эти крышки технически подпадают под категорию электролитических конденсаторов. Здесь электролит представляет собой твердый материал, изготовленный из оксидов тантала или ниобия. Они имеют очень низкое внутреннее сопротивление для данной емкости, однако они менее защищены от перенапряжения по сравнению с другими типами (керамика имеет лучшие характеристики) и имеют тенденцию капать без особого предупреждения и с большим количеством неприятного черного дыма.

Конденсаторы специального назначения

К ним относятся серебристо-слюдяные колпачки, колпачки X и Y и т. Д.Конденсаторы с номиналами X и Y, например, предназначены для линейной фильтрации - более прочная конструкция и более высокие номинальные напряжения, а также низкие емкости, для уменьшения тока, проходящего через него при подаче переменного напряжения, и для ограничения энергии, хранящейся в крышке, если постоянный ток напряжение приложено.

Суперконденсаторы и ультраконденсаторы

Они выводят конденсаторы на совершенно новый уровень, со значительно увеличенными емкостями, иногда в диапазоне сотен Фарад! Это возможно из-за какой-то умной химии.Суперконденсаторы и ультраконденсаторы ликвидируют разрыв между конденсаторами и химическими батареями. Однако они приходят в очень низком напряжении.

И это почти все распространенных типов конденсаторов , с которыми вы обычно можете столкнуться в мире электроники.

Как конденсаторы ведут себя в цепях

Первой полезной задачей было бы узнать, как рассчитать запасы энергии в конденсаторе, который задается формулой

.

E = 1 / 2CV 2

Где E - энергия, запасенная в джоулях, C - емкость в Фарадах, а V - напряжение в вольтах.Обратите внимание, что это уравнение принимает форму многих других ньютоновских уравнений для энергии, аккуратного пасхального яйца!

Предположим, что у вас есть крышка, рассчитанная на напряжение 50 В и емкостью 1000 мкФ, накопленная энергия при полных 50 В будет:

1/2 * 0,001000F * 50В * 50В

, который получается жалкими 1,25 Дж накопленной энергии.

Это выявляет существенный недостаток конденсаторов в качестве устройств накопления энергии - накопленная энергия для данного размера очень мала, батарея такого же размера будет иметь как минимум в тысячу раз больше накопленной энергии! Тем не менее, колпачки имеют значительно более низкое внутреннее сопротивление, чем химические батареи, что позволяет им быстро сбросить всю накопленную энергию.Короткое замыкание батареи может привести к ее нагреву только из-за мощности, рассеиваемой внутренним сопротивлением, но короткое замыкание конденсатора вызовет только несколько искр, поскольку весь заряд сбрасывается сразу без повреждения конденсатора.

Во-вторых, есть еще одна аккуратная формула, которая связывает напряжение, ток и емкость:

I / C = DV / DT

Где I - ток, подаваемый на конденсатор в амперах, C - емкость в Фарадах, а dV / dt - скорость изменения напряжения на клеммах конденсатора.Думайте об этом с точки зрения его единицы - вольт в секунду для данного тока и емкости. Не беспокойтесь о маленьком «d», это просто математический способ сказать «до предела ноль».

Допустим, у вас есть источник питания, который выдает постоянное напряжение 5 В при постоянном токе 1 мА, а затем, переставив уравнение, мы можем найти время, необходимое для зарядки конденсатора 100 мкФ до 5 В:

дт = CdV / I

dt = (0,000100F * 5 В) / 0,001A

dt = 0,5 секунды

Таким образом, конденсатор будет заряжаться до 5 В в 0.5 секунд. (Помните, что конденсатор может заряжать только до максимального напряжения, подаваемого на него, и никогда больше, они не могут волшебным образом «создавать» напряжение.)

Такое предсказуемое поведение конденсатора делает его очень полезным для генерации временных задержек, например, с небольшими дополнительными схемами. Вы можете изменить уравнение, чтобы получить время.

Теперь для хороших вещей - фактические конденсаторные цепи!

Конденсаторное поведение в цепях

Давайте начнем с простого - различные способы соединения конденсаторов.Это почти то же самое, что подключить два резистора - вы можете подключить их последовательно или параллельно.

Параллельно Конденсаторы

На рисунке ниже показаны три конденсатора, соединенных параллельно, со всеми соответствующими положительными и отрицательными клеммами, соединенными вместе (при условии, что крышки поляризованы). Общая емкость этого устройства является просто суммой всех емкостей всех конденсаторов в цепи. Это имеет смысл, поскольку параллельное соединение пластин конденсатора увеличивает площадь поверхности, увеличивая емкость.

Максимальное напряжение, с которым может работать этот тип устройства, - это напряжение наименьшего конденсатора, поскольку напряжение является общим для всех колпачков.

Пример должен прояснить это. Предположим, у вас есть два конденсатора, один с номиналом 25 В 470 мкФ, а другой 35 В 1000 мкФ. Общая емкость будет 470 мкФ + 1000 мкФ = 1470 мкФ. Тем не менее, максимальное напряжение, которое вы можете подать на этот блок (пучок конденсаторов, соединенных вместе, можно назвать конденсатором «банк»), составляет всего 25 В.Если вы положите что-нибудь выше этого банка, искры полетят, так как вы превысите макс. напряжение на конденсаторе 25 В.

Конденсаторы серии

Подключение конденсаторов параллельно особенно полезно, когда вы хотите большую емкость, и у вас есть только небольшие значения. Параллельное объединение этих меньших предельных значений в конечном итоге даст вам большее значение и выполнит работу, если вы помните о напряжении.

Теперь поставить конденсаторы в ряд немного сложнее.Емкость определяется по формуле:

1 / Ctotal = 1 / C1 + 1 / C2 +… + 1 / Cn

Где C1, C2… Cn - емкости каждого конденсатора, используемого в цепи.

Напряжение, которое теперь может выдерживать банк, является суммой всех номинальных напряжений.

Если вы получили колпачок, рассчитанный на 10 В 1 мкФ, и колпачок, рассчитанный на 50 В 10 мкФ, то напряжение, которое банк может выдерживать последовательно, составляет 10 В + 50 В = 60 В. Емкость составляет 0,9091 мкФ.

Напряжение на конденсаторе против времени

Что если мы хотим зарядить конденсатор? Мы могли бы просто подключить его к источнику напряжения, как показано на рисунке ниже.Здесь произошло бы то, что в тот момент, когда источник напряжения подключен, предполагая, что крышка полностью разряжена, на пластинах стремительно накапливается заряд, что приводит к очень большому (теоретически бесконечному!) Всплеску тока, ограниченному только внутренним сопротивлением конденсатор. Конечно, это нежелательно, если в вашем блоке питания есть что-то вроде аккумулятора. Разумной идеей было бы добавить последовательно резистор с конденсатором и источником напряжения, чтобы ограничить ток, как на рисунке, и вуаля! У вас есть что-то, что инженеры называют RC-цепью, «R» для резистора и «C» для конденсатора!

Эта схема показывает интересное поведение.Когда напряжение подключено к стороне резистора с маркировкой «I», напряжение на конденсаторе медленно увеличивается, поскольку ток ограничен. График выглядит примерно так:

Более математически склонные мои зрители распознали бы форму наклона - это похоже на экспоненциальную функцию!

Помните, как я сказал, что ограничения могут быть использованы для создания задержек? Это один из способов сделать это без источника постоянного тока (который требует дополнительной схемы).Поскольку время, необходимое для достижения определенного напряжения, предсказуемо, если мы знаем емкость, напряжение и сопротивление, мы можем создать схемы задержки.

Произведение сопротивления и емкости, RC, известно как постоянная времени цепи. Этот параметр становится полезным для точного определения времени достижения заданного напряжения, как показано на рисунке ниже.

Из графика видно, что конденсатор достигает 63% от приложенного напряжения за одну постоянную времени и так далее.

Это принцип, который использует всесезонный таймер 555, хотя расчетные уравнения немного другие.

Другим интересным применением RC-схем является фильтрация сигналов, то есть удаление электрического сигнала нежелательной частоты из схемы. RC-цепь требует определенного количества времени для зарядки и разрядки от источника. Если мы применяем периодическую волну с периодом времени больше, чем RC, то тот же сигнал появится на выходе с очень небольшим искажением.Однако при увеличении частоты сигнал продолжает менять полярность быстрее, чем схема может заряжаться и разряжаться, и в конце концов после определенной точки сигнал исчезает, и все, что у вас остается, это чистый постоянный ток! Это называется ослаблением сигнала. Как вы можете видеть, RC-схема действует как фильтр, который блокирует сигналы переменного тока (даже сигналы, наложенные на постоянный ток, то есть имеющие смещение постоянного тока) за пределы определенной частоты. Этот вид фильтра называется фильтром нижних частот, то есть он пропускает низкие частоты, но не пропускает высокие частоты.

Конденсаторы в цепях переменного тока

Конденсаторы ведут себя интересным образом при установке в цепи переменного тока. С точки зрения сигнала их можно рассматривать как частотно-зависимые резисторы. Как видно выше, RC-цепь блокирует все переменные сигналы, но что происходит, когда конденсатор соединен последовательно с источником переменного напряжения? С точностью до наоборот!

Поскольку конденсатор представляет собой всего лишь две металлические пластины, разделенные изолятором, он не пропускает постоянный ток через него.Однако сигнал переменного тока имеет постоянно меняющиеся напряжения, поэтому одна пластина видит изменяющееся напряжение и вызывает противоположный заряд на другой пластине, как показано на рисунке:

Это дает общий эффект пропускания тока через конденсатор на относительно высоких частотах. Добавление резистора параллельно с выходом создает фильтр верхних частот, то есть фильтр, который пропускает только высокие частоты и блокирует все сигналы постоянного тока.

«Сопротивление переменному току» или полное сопротивление конденсатора определяется по формуле:

XC = 1 / (2 * π * f * C)

Где XC - емкостное реактивное сопротивление или импеданс, f - частота, а C - емкость.Вы можете использовать эту формулу для расчета виртуального «сопротивления» конденсатора в цепи переменного тока.

Где конденсаторы найдены в дикой природе

Хорошо, этого было достаточно, теория. Давайте посмотрим на многие использования конденсаторов .

Первое место, которое вы могли бы ожидать увидеть конденсаторы, - это всевозможные источники питания в качестве фильтров и для развязки. Они действуют как зарядные резервуары, обеспечивая быстрый ток, когда нагрузка в этом нуждается.

Вот два снимка осциллографа, которые показывают эффект отсутствия и наличия конденсатора на выводах блока питания.Как вы можете видеть, наличие конденсаторов значительно снижает «шум» на шинах электропитания, таким образом защищая чувствительные детали от внезапных скачков напряжения.

Их также называют «развязывающими» конденсаторами , поскольку они «развязывают» участки цепи, на которой они смонтированы, от источника питания. Иногда силовые провода на плате могут быть довольно длинными и иметь высокую индуктивность и сопротивление. Это может привести к тому, что они обеспечат меньший ток, чем обычно.Наличие конденсатора на конце линии питания похоже на наличие меньшего временного «аккумулятора» на устройстве, который обеспечивает всплески тока при необходимости и заряжается, когда устройство потребляет мало энергии.

Вы можете использовать формулу I / C = dV / dt, чтобы рассчитать необходимую емкость для снятия «пульсирующего» напряжения с клемм источника питания.

Предположим, что у вас есть источник питания , напряжение которого изменяется от 11,5 В до 12 В (пульсация) каждые 10 мс, что характерно для устройств с питанием от сети из-за частоты 50 Гц, и вам необходимо надеть колпачок на клеммы, чтобы сгладить напряжение.Если ток нагрузки в этом случае равен 1А, то мы можем изменить формулу таким образом, чтобы определить емкость:

(I * DT) / DV

Где I - ток нагрузки, dt - период времени шума, а dV - пульсирующее напряжение. Подставляя значения, мы находим, что нам нужна емкость 20000 мкФ. Теперь это может показаться много, но вы могли бы сойти с рук гораздо меньше. Полученное значение служит только ориентиром.

В реальной жизни вы можете найти несколько типов и значений конденсаторов на разных линиях электропередачи, чтобы снизить уровень шума на многих частотах и ​​получить максимально плавное напряжение.

Другое использование конденсаторов в сложных фильтрах, подобных этому:

Но более простым фильтром будет RC-фильтр , здесь описан один интересный фильтр.

Всем известна плата микроконтроллера Arduino. Универсальный инструмент, но вы никогда не задумывались, почему аналоговые выходы излучают цифровой сигнал ШИМ? Это потому, что они были разработаны для использования с внешней сетью фильтрации для сглаживания напряжения ШИМ до действительно аналогового напряжения.Это можно сделать с помощью таких простых деталей, как резистор 1 кОм и конденсатор 10 мкФ. Попытайся!

Другое использование, как упомянуто выше, является временем. Простой генератор может быть построен с использованием вентиля NAND (попробуйте выяснить, почему вентили AND не будут работать), резистором и конденсатором.

Предполагая, что изначально на конденсаторе нет напряжения, входы NAND (которые связаны вместе) видят около 0 В на них и включают выход. Крышка теперь заряжается через резистор.Когда он достигает «высокого» порога затвора, выходной сигнал мигает низко, и крышка теперь разряжается. Этот цикл продолжает производить прямоугольный выходной сигнал с частотой, зависящей от значений R и C.

Наконец, еще одним интересным применением конденсаторов является накопление энергии. Конечно, конденсаторы не подходят для батарей, но для некоторых применений, которым требуется быстрая энергия, крышки лучше всего подходят для работы.

Устройства

, такие как ружья (больше можно найти в сети), нуждаются в большом импульсе тока для ускорения снаряда, поэтому для таких целей используются конденсаторы высокого напряжения, часто с такими характеристиками, как 450 В, 1500 мкФ, которые могут хранить значительные количества энергии.

Заключение

Вот так! Теперь вы знаете о конденсаторах гораздо больше, чем то, с чего начинали. Теперь вы можете создавать простые конденсаторные схемы. Помните, что есть чему поучиться, и не переключайте клеммы блока питания!


Смотрите также

Поиск