Строительство дач
Отделочные работы
Песок карьерный мытый
Щебень известняковый
Гранитный щебень
Коттеджные поселки
Ландшафтное проектирование
Архитектурное проектирование
Проектирование канализации
Реконстукция зданий

СТРОИТЕЛЬНЫЕ РАБОТЫ

Сварочный трансформатор схема


инструкция по сбору, необходимые детали, схема

Аппарат для сварки необходим, если нужно крепко соединить металлические элементы. Стоит отметить, что таким сварочником можно как варить резать так и резать стальные детали.

Самое интересное, что состав и плотность элементов такому аппарату не принципиальна. Есть много моделей агрегатов для варки. Обратите внимание на инверторные, трансформаторные и конечно, полуавтоматы.

Многие специалисты по сварочным работам планируют открыть свое дело или подрабатывать в свободное время. Однако цена сварочной машины зашкаливает для среднестатистического рабочего человека.

Содержание статьиПоказать

Введение

Цена качественных агрегатов измеряется в условных единицах, цифра которых стартует от 100. Не каждый бюджет осилит такую покупку.

В такой ситуации есть выход – сделать агрегат своими руками. А когда не хватает знание, то советуем начать с самого простого – со сборки трансформатора.

Трансформатор – статическое электромагнитное устройство, главный орган аппарата для сварки, буквально его сердце. Многие задаются следующими вопросами:

  • Как намотать такой трансформатор?
  • Как его рассчитать?
  • Как собрать агрегат для сваривания?

Без паники. В данной статье мы дадим ответ на вопрос, как своими силами сделать статическое электромагнитное устройство для сварочного аппарата для получения качественной основы для монтажа сварочного агрегата.

Основы

Как упомянуто выше, трансформатор – главный орган. Принцип работы состоит в изменении входящего напряжения в переменный/постоянный ток, требующийся для работ со сваркой.

Статическое электромагнитное устройство, главным образом – это две обмотки, соединенные индуктивно.

Первая совокупность витков провода, к которой подводится энергия преобразуемого переменного тока, и вторая обмотки расположены на "сердце". Последний производят из динамной стали и служит шунтом.

Вы можете создать трансформатор как для личного применения, так и мощный промышленный агрегат. Отметим, во всех случаях он обязан служить вашим интересам, следовательно, иметь определенные параметры для проведения работ со сваркой.

Более распространена сборка сварочного агрегата с намоткой трансформатора, рассчитанная из ампеража в 150 – 170 и способностью проводить напряжение приблизительно 50 В.

Таких характеристик вполне достаточно для использования в быту. Вы сможете варить большинство металлов с применением электродов до трех миллиметров в диаметре. Конечно можно брать диаметр в 4 миллиметра, но в таком случае вы потеряете качество шва.

Следовательно, чем больший диаметр стержня из электропроводного материала вам придется применять, тем большую мощность должен иметь трансформатор.

Зависимость прямо-пропорциональна. При сборке статического электромагнитного устройства обязательно примите к сведению его предельные очертания.

Размер статического электромагнитного устройства будет увеличиваться с планируемым увеличением мощности сварочного агрегата.

При этом увеличение веса и параметров неизбежно. Рекомендуем сориентироваться с характеристиками которыми должен обладать ваш будущий аппарат - это поможет оптимизировать его вес и параметры.

Особенности

Внешний вид сварочного аппарата состоящего из самостоятельно собранного трансформатора не будет соответствовать производственному образцу, понимайте эту особенность.

Невозможно сделать самому из подручных материалов заводской агрегат. Если экстерьер принципиален, конечно, можно сделать самому, но дешевле это не будет. Проще купить.

Следующую особенность, которую следует учесть – постоянная смена характеристик. Даже установка их вручную не спасает.

Поясню, установив, например, ампераж в 120, агрегат на самодельном трансформаторе каждый раз будет выдавать значение меньше или большее. Такое отклонение будет все время.

Конечно, она не критична, но, если ваша работа предусматривает щепетильности, рекомендуем рассмотреть вариант с покупкой готового аппарата.

Дома нет такой возможности для создания точного регулятора, не меняющий характеристик при каждом запуске.

Если ваша цель – забор или теплица, то собирайте собственный сварочный агрегат смело, он вполне подойдет для такой работы и его погрешности не критично влияют на итог.

Если вы собрали трансформатор на постоянном токе, он, конечно, будет во много раз дешевле, но поставит под вопрос надежность агрегата.

Связано это с отсутствием предохранителей, как у моделей заводского типа. Хотя к плюсам самостоятельной сборки относят возможность сделать статическое электромагнитное устройство с любым набором характеристик.

Он может быть как мощным агрегатом, так и слабым механизмом. Для это следует правильно провести расчет сварочного трансформатора для будущей машины.

Вы приняли решения собрать статическое электромагнитное устройство самостоятельно и далее заняться сборкой самого сварочника. Советуем размещать элементы в металлический каркас/бокс, к примеру, корпус от компьютерного системного блока.

Обратите внимание, что вы можете не просто использовать любые схемы, но и модернизировать их в процессе. Перед первым включением и пробной работой, обязательно, проверьте узлы вашего аппарата.

Собственно, это и есть основные особенности, о которых вам надо знать. Помните, что необходимо кое-какое минимальное понимания в области электротехники.

Наверно это и так понятно. Но все же, предварительно рекомендуем освежить или приобрести дополнительные знания в этой области и лишь затем приступать к сборке статического электромагнитного устройства.

Статическое электромагнитное устройство с переменным током

Самостоятельно собранное статическое электромагнитное устройство с переменным током для сварочника – это классика, среди видов трансформаторов.

Конечно, одним из главных преимуществ такого вида статического электромагнитного устройства, в сравнении с работающими на постоянном токе, дешевая сборка и простота ремонта.

Хотя при этом следует отметить несколько недостатков. И первым, можно назвать – проблемный зажег дуги. Горение стабильно и требует огромного опыта мастера или результат не порадует, шов выходит с низким качеством и с множеством дефектов.

Тем не менее, чтобы собрать трансформатор на постоянном токе, вам понадобится сначала собрать статическое электромагнитное устройство на переменном токе, так последний является основой для первого. Все достаточно просто.

Провода в обмотке

Как уже говорили, чтобы собрать трансформатор, на начальном этапе нужны провода для первой обмотки и собственно второй обмотки. Помним, кроме обмотки нужен "сердечник".

Для создания которого используют исключительно сталь электротехнического типа, а далее наматывают на него провода – создают обмотку.

Начнем с расчетов и необходимых теххарактеристик будущего трансформатора. К примеру, вводные данные возьмем следующие: Напряжение – 60В, Ток – 120-160А. Исходя из этих характеристик, необходимо использовать провода с сечением 4 кв мм.

Мы рекомендуем взять провода с сечением в 7 кв мм, считаем более подходящим именно этот вариант, так как ваш будущий агрегат будет менее чувствителен перепадам напряжения в сети.

При этом оптимальным для первичной обмотки будут провода с медной сердцевиной в сечении составляющие именно 3 кв мм.

Важно при выборе проводов обращать внимание на покрытие. Обязательное условие, оно должно быть из ткани. И никаких полимеров. В связи с тем, что последние подвержены плавлению от большого нагрева и короткому замыканию.

В ситуации, когда нет нужного диаметра провода, рекомендуем брать два тоненьких и накручивать их совместно.

При этом стоит отметить, что такой способ увеличит совокупность витков провода в размере, соответственно корпус трансформатора будет иметь большие предельные очертания. Вся выложенная информация выше касается первичной обмотки.

А вот для вторичной смело берите провода большого диаметра, например, которыми подсоединяется держатель электрода.

Сердечник

На подготовительном этапе мы взяли нужное количество и тип проводов. Далее следует приступить к созданию сердечника.

На рисунке ниже представлен оптимальный по всем характеристикам сердечник для самостоятельно собираемого трансформатора – тип «стержневый».

Напоминаем, для сборки сердечника берите только пластины из электротехнического металла. Понадобится пластины толщиной от 0,35 мм, но не толще 0,55мм.

Габариты сердечника (А, В, С, D – на рис.) просчитываем исходя из сечения провода. Конечно, с опытом можно и «с закрытыми глазами его собирать, главное – все ветки на своем месте.

Собираем сердечник. Берем пластины Г-образной формы и далее собираем как на рисунке ниже. Когда будет достигнута нужная толщина сердечника, болтами скрепляют пластины по углам.

Рекомендуем обрабатывать пластины тонким напильником. Затем сердечник изолируют.

Намотка

Следующий шаг – намотка будущего трансформатора. Как упоминалось выше, начинаем с первичной обмотки. Она составит около двухсот десяти/пятидесяти витков.

Мотаем, согласно рисунку ниже. В конце наматывания, крепим текстолитовую пластину. На ней же крепим концы нашей обмотки болтами.

Приступаем к вторичной обмотке. Она должна состоять из количества витков в районе 70. Аналогично крепим текстолитовую пластину и закрепляем концы.

Все - ваш трансформатор готов к работе или совершенствованию. Посмотрите на окончательный вид намотанного трансформатора на рисунке ниже.

Постоянный ток

Как известно, собрать сварочный агрегат можно как на переменном токе, так и на постоянном. Собственно, для последнего собирают трансформатор постоянного тока (ТПТ). Такой ТПТ рекомендуем изготавливать для полуавтоматических агрегатов и инверторов.

Его преимущество – легко поджигаемая и главное стабильна дуга. Агрегат с таким трансформатором осилит варку деталей любой толщины и любого типа стали, как нержавейку так и чугун.

Для того, чтобы собрать ТПТ нужно запас времени в 10-15 минут, в случае уже собранного трансформатора переменного тока (как описывалось ниже).

Модернизация его в ТПТ состоит в подключении к вторичной совокупности витков провода - выпрямителя. Последний изготавливается на диодах.

Использовать для выпрямителя нужно диоды с адекватным охлаждением и его параметры должны выдерживать силу тока в 200А. Рекомендуем выбрать тип Д161. Далее выравниваем ток.

Берем два конденсатора (С1, С2) со следующими параметрами: 15000 мкФ, напряжение 50V.

Схема для сборки наведена ниже. L1 – индукционная катушка для регулировки тока. Х4 – контакты, для последующего подсоединения держателя электродов. Х5 – контакты для подсоединения массы.

Описанная схема применяется годами и продолжает показывать себя с положительной стороны. Удобная рабочая схема – пользуйтесь!

Подытожим

Для сборки трансформатора, не нужно иметь углубленных знаний, достаточно немного понимания в электротехнике и умения применить такие знания на практике. Даже если таких знаний нет, можно потратить немного времени – около недели, не более.

Тем более, сегодня доступно не только читабельный вариант, а и множество наглядных видеоматериалов. После прохождения обучения появится понимания всех этапов по сборке трансформатора.

А далее несколько проб и ваш первый работоспособный сварочный аппарат готов.

Самостоятельно сделанные аппараты имеют много положительных сторон.

Они, во-первых, экономичны. Во-вторых, недорогие в сборке. В-третьих, функционал соответствует конкретно вашим нуждам. В-четвертых, легко ремонтируемый своими силами. Качество будущего агрегата зависит от используемых материалов, все зависит от вас.

Желаем удачи! Делитесь комментарием и пусть ваш отзыв будет полезен следующему «первособирателю».

Сварочный инвертор

SMPS | Схемы собственного производства

Если вы ищете вариант замены обычного сварочного трансформатора, сварочный инвертор - лучший выбор. Сварочный инвертор удобен и работает от постоянного тока. Текущий контроль поддерживается через потенциометр.

Автор: Dhrubajyoti Biswas

Использование топологии с двумя переключателями

При разработке сварочного инвертора я применил прямой инвертор с топологией с двумя переключателями. Здесь входное напряжение линии проходит через фильтр электромагнитных помех, сглаживая его с большой емкостью.

Однако, поскольку импульс тока включения имеет тенденцию быть высоким, необходимо наличие цепи плавного пуска. Поскольку переключение включено, и конденсаторы первичного фильтра заряжаются через резисторы, мощность дополнительно обнуляется путем включения реле.

В момент переключения питания используются IGBT-транзисторы, которые затем подаются через управляющий трансформатор с передним затвором TR2 с последующим формированием цепи с помощью регуляторов IC 7812.

Использование IC UC3844 для управления ШИМ

Схема управления, используемая в этом сценарии, - UC3844, которая очень похожа на UC3842 с пределом ширины импульса до 50% и рабочей частотой до 42 кГц.

Цепь управления питается от вспомогательного источника питания 17 В. Из-за высоких токов в обратной связи по току используется трансформатор Tr3.

Напряжение чувствительного регистра 4R7 / 2W более или менее равно токовому выходу. Выходной ток может дополнительно контролироваться потенциометром P1. Его функция заключается в измерении пороговой точки обратной связи, а пороговое напряжение на выводе 3 UC3844 составляет 1 В.

Одним из важных аспектов силового полупроводника является то, что он нуждается в охлаждении, и большая часть выделяемого тепла отводится в выходных диодах.

Верхний диод, состоящий из 2-х DSEI60-06A, должен выдерживать ток в среднем 50А и потери до 80 Вт.

Нижний диод, то есть STTh300L06TV1, также должен иметь средний ток 100 А и потери до 120 Вт. С другой стороны, общая максимальная потеря вторичного выпрямителя составляет 140 Вт. Выходной дроссель L1 дополнительно соединен с отрицательной шиной.

Это хороший сценарий, поскольку радиатор не имеет высокочастотного напряжения. Другой вариант - использовать диоды FES16JT или MUR1560.

Однако важно учитывать, что максимальный ток, протекающий по нижнему диоду, в два раза больше, чем ток верхнего диода.

Расчет потерь IGBT

По сути, расчет потерь IGBT является сложной процедурой, поскольку помимо проводящих потерь коммутационные потери также являются еще одним фактором.

Также каждый транзистор теряет около 50 Вт. Мост выпрямителя также теряет мощность до 30 Вт и устанавливается на тот же радиатор, что и IGBT, вместе с диодом сброса UG5JT.

Существует также возможность замены UG5JT на FES16JT или MUR1560. Потеря мощности диодов сброса также зависит от способа построения Tr1, хотя потеря меньше по сравнению с потерей мощности от IGBT. Мост выпрямителя также приводит к потере мощности около 30 Вт.

Кроме того, при подготовке системы важно помнить о масштабировании максимального коэффициента загрузки сварочного инвертора. Основываясь на измерении, вы можете быть готовы выбрать правильный размер датчика обмотки, радиатора и т. Д.

Еще один хороший вариант - добавить вентилятор, так как он будет контролировать тепло.

Принципиальная электрическая схема

Детали обмотки трансформатора

Переключающий трансформатор Tr1 обмотан двумя ферритовыми сердечниками EE, и они оба имеют центральную секцию колонки 16x20 мм.

Таким образом, общее поперечное сечение составляет 16x40 мм. Следует позаботиться о том, чтобы в зоне ядра не было воздушного зазора.

Хорошим вариантом было бы использовать первичную обмотку на 20 витков, обмотав ее 14 проводами по 0.Диаметр 5 мм.

Вторичная обмотка с другой стороны имеет шесть медных полос 36x0,55 мм. Трансформатор прямого привода Tr2, который спроектирован на малой паразитной индуктивности, следует процедуре трехфазной обмотки с тремя витыми изолированными проводами диаметром 0,3 мм и обмотками 14 витков.

Секция сердечника изготовлена ​​из h32 с диаметром средней колонны 16 мм и не оставляет зазоров.

Трансформатор тока Tr3 выполнен из дросселей подавления электромагнитных помех. В то время как первичный имеет только 1 ход, вторичный ранен с 75 ходами 0.4 мм проволока.

Важной проблемой является сохранение полярности обмоток. В то время как L1 имеет ферритовый сердечник EE, средняя колонна имеет поперечное сечение 16x20 мм с 11 витками медной полосы 36x0,5 мм.

Кроме того, общий воздушный зазор и магнитная цепь установлены на 10 мм, а его индуктивность составляет 12 мкГн куб.

Обратная связь по напряжению на самом деле не мешает сварке, но, безусловно, влияет на потребление и потерю тепла в режиме ожидания. Использование обратной связи по напряжению очень важно из-за высокого напряжения около 1000В.

Кроме того, ШИМ-контроллер работает с максимальным рабочим циклом, что увеличивает уровень потребляемой мощности, а также нагревательных компонентов.

310 В постоянного тока может быть извлечено из сети 220 В после выпрямления через мостовую сеть и фильтрации через пару электролитических конденсаторов 10 мкФ / 400 В.

Источник питания 12 В может быть получен из готового блока адаптера 12 В или построен дома с помощью информации, предоставленной здесь . :

Алюминиевая сварочная цепь

Этот запрос был передан мне одним из специализированных читателей. этого блога мистерХосе. Вот детали требования:

Мой сварочный аппарат Fronius-TP1400 полностью функционален, и я не заинтересован в изменении его конфигурации. Эта машина, которая имеет возраст, является первым поколением инверторных машин.

Это базовое устройство для сварки покрытым электродом (сварка MMA) или газом вольфрамовой дугой (сварка TIG). Переключатель позволяет выбор.

Это устройство обеспечивает только постоянный ток, это очень подходит для сварки большого количества металлов.

Существует несколько металлов, таких как алюминий, из-за его быстрой коррозии при контакте с окружающей средой необходимо использовать пульсирующий переменный ток (прямоугольная волна от 100 до 300 Гц), что способствует устранению коррозии в циклах с инвертированной полярностью и поверните плавление в циклах прямой полярности.

Существует мнение, что алюминий не окисляется, но это неправильно, что происходит в тот момент, когда в нулевой момент, когда он вступает в контакт с воздухом, образуется тонкий слой окисления, который с тех пор сохраняет его от следующих последующих окисление.Этот тонкий слой усложняет сварочную работу, поэтому используется переменный ток.

Мое желание - сделать устройство, которое будет подключено, между клеммами моего сварочного аппарата постоянного тока и горелки, чтобы получить этот переменный ток в горелке.

Это то, где у меня возникают трудности, в момент создания этого преобразователя CC в AC. Я увлекаюсь электроникой, но не специалистом.

Так что я прекрасно понимаю теорию, я смотрю на ИС HIP4080 или аналогичную таблицу данных и вижу, что ее можно применить к моему проекту.

Но моя большая трудность состоит в том, что я не делаю необходимый расчет значений компонентов. Может быть, есть какая-то схема, которую можно применить или адаптировать, я не нахожу ее в интернете и не знаю, где искать, поэтому и прошу вашей помощи.

Конструкция

Для того, чтобы сварочный процесс мог устранить окисленную поверхность алюминия и обеспечить эффективное сварочное соединение, существующий сварочный стержень и алюминиевая пластина могут быть интегрированы с полным приводом моста. , как показано ниже:

Rt, Ct можно рассчитать с некоторыми пробами и ошибками, чтобы получить колебания мошек на любой частоте между 100 и 500 Гц.Для точной формулы вы можете обратиться к этой статье.

Th 15В вход может быть подан от любого адаптера 12В или 15В переменного тока в постоянный.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете общаться через комментарии, я буду очень рад помочь!

Понимание векторной группы трансформаторов (часть 1)

Введение

Трехфазный трансформатор состоит из трех комплектов первичных обмоток, по одной для каждой фазы, и трех комплектов вторичных обмоток, намотанных на один и тот же железный сердечник. Отдельные однофазные трансформаторы можно использовать и соединять снаружи, чтобы получить те же результаты, что и для трехфазного блока.

Понимание векторной группы трансформаторов (часть 1)

Первичные обмотки связаны одним из нескольких способов.Две наиболее распространенные конфигурации - это дельта, в которой конец полярности одной обмотки соединен с концом неполярности следующей, и звезда, в которой все три конца неполярности (или полярности) соединены вместе. Вторичные обмотки подключены аналогично. Это означает, что трехфазный трансформатор может иметь свою первичную и вторичную обмотки, подключенные одинаково (треугольник треугольник или звезда-звезда) или по-разному (треугольник треугольник или звезда-треугольник).

Важно помнить, что сигналы вторичного напряжения находятся в фазе с первичными сигналами, когда первичная и вторичная обмотки подключены одинаково.Это условие называется « без сдвига фаз ».

Но когда первичная и вторичная обмотки подключены по-разному, формы волны вторичного напряжения будут отличаться от соответствующих форм волны первичного напряжения на 30 электрических градусов. Это называется сдвигом фазы на 30 градусов. Когда два трансформатора соединены параллельно, их фазовые сдвиги должны быть идентичными; в противном случае произойдет короткое замыкание при подаче напряжения на трансформаторы ».


Основная идея обмотки

Напряжение переменного тока, приложенное к катушке, будет индуцировать напряжение во второй катушке, где они связаны магнитным путем.Фазовое соотношение двух напряжений зависит от того, каким образом соединены катушки. Напряжения будут либо синфазными, либо смещенными на 180 градусов.

Когда 3 обмотки используются в обмотке трехфазного трансформатора, существует несколько вариантов. Напряжения катушки могут быть в фазе или смещены, как указано выше, с катушками, соединенными звездой или треугольником, и, в случае обмотки звезды, иметь точку звезды (нейтральную), выведенную на внешний вывод или нет.


Six Ways to Wire Star Winding:

Six Ways для подключения Star Winding

Шесть способов обмотки Delta Winding:

Six Ways для подключения Delta Winding

Полярность

Напряжение переменного тока, приложенное к катушке, будет индуцировать напряжение во второй катушке, где они связаны магнитным путем.Соотношение фаз двух напряжений зависит от того, каким образом обмотки соединены. Напряжения будут либо синфазными, либо смещенными на 180 градусов.

Когда 3 обмотки используются в обмотке трехфазного трансформатора, существует несколько вариантов. Напряжения катушки могут быть в фазе или смещены, как указано выше, с катушками, соединенными звездой или треугольником, и, в случае обмотки звезды, иметь точку звезды (нейтральную), выведенную на внешний вывод или нет.

Аддитивная и субстративная полярность трансформатора

Когда пара катушек трансформатора имеет то же направление, что и напряжение, индуцированное в обеих катушках, в одном направлении от одного конца к другому концу.Когда две катушки имеют противоположное направление намотки, то напряжение, наведенное на обе катушки, находится в противоположном направлении


Обозначения соединения обмотки

  • Первый символ: для Высокое напряжение : всегда заглавные буквы.
  • D = Дельта, S = Звезда, Z = Взаимосвязанная звезда, N = Нейтральный
  • Второй символ: для Низкое напряжение : Всегда маленькие буквы.
  • d = дельта, s = звезда, z = взаимосвязанная звезда, n = нейтральный.
  • Третий символ: Смещение фазы, выраженное как число часов (1,6,11)
Пример - Dyn11
Трансформатор

имеет первичную обмотку, соединенную треугольником ( D ), вторичную звезду ( и ) со звездной точкой ( n ) и фазовым сдвигом на 30 градусов ( 11 ).

Точка путаницы возникает в нотации повышающего трансформатора. Как указано в стандарте IEC60076-1 , обозначение в последовательности HV-LV. Например, повышающий трансформатор с первичным соединением и вторичным соединением со звездой записывается не как «dY11», а как «Yd11». 11 указывает, что обмотка НН опережает ВН на 30 градусов.

Трансформаторы, изготовленные в соответствии со стандартами ANSI, обычно не имеют векторной группы, указанной на их паспортной табличке, и вместо этого дается векторная диаграмма, показывающая связь между первичной и другими обмотками.


Векторная группа трансформаторов

Обмотки трехфазного трансформатора могут быть соединены несколькими способами. На основании соединения обмоток определяется векторная группа трансформатора.

Группа векторов трансформаторов указана производителем на заводской табличке трансформатора. Группа векторов указывает разность фаз между первичной и вторичной сторонами, обусловленную конкретной конфигурацией соединения обмоток трансформатора.

Определение векторной группы трансформаторов очень важно, прежде чем подключать два или более трансформаторов параллельно.Если два трансформатора разных векторных групп соединены параллельно, то существует разность фаз между вторичной обмоткой трансформаторов и большой циркулирующий ток протекает между двумя трансформаторами, что очень вредно.


Смещение фазы между обмотками ВН и НН

Вектор для обмотки высокого напряжения берется как опорный вектор. Смещение векторов других обмоток от вектора отсчета, с вращением против часовой стрелки, представлено с помощью часового числа часов.

IS: 2026 (Часть 1V) -1977 дает 26 наборов соединений звезда-звезда, звезда-дельта и звезда зигзаг, дельта-дельта, дельта-звезда, дельта-зигзаг, зигзагообразная звезда, зигзагообразная дельта. Смещение вектора обмотки низкого напряжения изменяется от нуля до -330 ° с шагом -30 °, в зависимости от способа подключения.

Вряд ли какая-либо система питания использует такое большое разнообразие соединений. Некоторые из наиболее часто используемых соединений с фазовым смещением 0, -300, -180 ″ и -330 ° (установка часов 0, 1, 6 и 11).

На первом месте стоит символ обмотки высокого напряжения, затем символы обмоток в порядке убывания напряжения. Например, звезда, звезда и треугольник, подключенные к трансформатору 220/66/11 кВ, и векторы обмоток 66 и 11 кВ, имеющие сдвиг фаз 0 ° и -330 ° с опорным вектором (220 кВ), будут представлены как Yy0 - Yd11

Цифры (0, 1, 11 и т. Д.) Относятся к сдвигу фаз между обмотками ВН и НН с использованием обозначения циферблата. Вектор, представляющий обмотку ВН, берется в качестве эталона и устанавливается на 12 часов.Чередование фаз всегда против часовой стрелки. (Международный принят).

Используйте индикатор часа в качестве индикатора угла смещения фазы. Поскольку на часах 12 часов, а круг состоит из 360 °, каждый час представляет 30 °. Таким образом, 1 = 30 °, 2 = 60 °, 3 = 90 °, 6 = 180 ° и 12 = 0 ° или 360 °.

Минутная стрелка установлена ​​на 12 часов и заменяет линию на нейтральное напряжение (иногда воображаемое) обмотки ВН. Эта позиция всегда является контрольной точкой.

Пример
  • Цифра 0 = 0 °, что вектор LV находится в фазе с фазором HV
    Цифра 1 = отставание 30 ° (LV отстает от HV на 30 °), потому что вращение идет против часовой стрелки.
  • , цифра 11 = отставание 330 ° или опережение 30 ° (низковольтные выводы HV с 30 °)
  • цифра 5 = запаздывание 150 ° (LV запаздывает HV с 150 °)
  • цифра 6 = 180 ° отставание (LV отстает от HV на 180 °)

Когда трансформаторы работают параллельно, важно, чтобы любой фазовый сдвиг был одинаковым для каждого. Распараллеливание обычно происходит, когда трансформаторы расположены в одном месте и подключены к общей шине (накренированной) или расположены в разных местах с вторичными клеммами, соединенными через цепи распределения или передачи, состоящие из кабелей и воздушных линий.

Фазовый сдвиг (градус) Соединение
0 ГГ0 Dd0 Dz0
30 лаг Yd1 Dy1 Yz1
60 лаг Dd2 Dz2
120 лаг Dd4 Dz4
150 лаг Yd5 Dy5 Yz5
180 лаг Yy6 ДД6 Dz6
150 выводов Yd7 Dy7 Yz7
120 вывод Dd8 Dz8
60 вывод Дд10 Dz10
30 выводов Yd11 Dy11 Yz11

Фазовые вводы на трехфазном трансформаторе имеют маркировку ABC, UVW или 123 (заглавные буквы на стороне ВН, маленькие буквы на стороне НН).Два обмотки, трехфазные трансформаторы можно разделить на четыре основные категории

Группа часов TC
Группа I 0 часов, 0 ° дельта / дельта, звезда / звезда
Группа II 6 часов, 180 ° дельта / дельта, звезда / звезда
Группа III 1 час, -30 ° звезда / дельта, дельта / звезда
Группа IV 11 часов, + 30 ° звезда / дельта, дельта / звезда
Минус указывает на отставание по НН, плюс плюс указывает на то, что ЛВ идет вперед
Обозначение часов 0 (Phase Shift 0)
Обозначение часов 0 (сдвиг фазы 0)
Обозначение часов 1 (Phase Shift -30)
Обозначение часов 1 (Phase Shift -30)
Обозначение часов 2 (Phase Shift -60)
Обозначение часов 2 (Phase Shift -60)
Обозначение часов 4 (смещение фазы -120)
Обозначение часов 4 (смещение фазы -120)
Обозначение часов 5 (смещение фазы -150)
Обозначение часов 5 (смещение фазы -150)
Обозначение часов 6 (сдвиг фазы +180)
Обозначение часов 6 (сдвиг фазы +180)
Обозначение часов 7 (Phase Shift +150)
Обозначение часов 7 (сдвиг фаз +150)
Обозначение часов 11 (сдвиг фазы +30)
Обозначение часов 11 (сдвиг фаз +30)

Продолжение следует…

,Схема цепи

бестрансформаторного источника питания

Генерация постоянного тока низкого напряжения от сети переменного тока 220 В или 110 В очень полезна и необходима в области электроники. Низкое напряжение постоянного тока, например, 5 В, 6 В, 9 В, 12 В, используется в электронных схемах, светодиодных лампах, игрушках и многих других бытовых электронных приборах. Обычно для их питания используются батареи, но их необходимо время от времени заменять, что неэффективно с точки зрения затрат, а также требует нашего времени и энергии. Таким образом, альтернатива состоит в том, чтобы генерировать постоянный ток из сети переменного тока, для которого доступно много адаптеров переменного тока, но какие схемы они используют внутри?

Простой и понятный подход заключается в использовании понижающего трансформатора для снижения переменного тока, но недостатки использования трансформатора заключаются в том, что они дороги по стоимости, тяжелы по весу и имеют большие размеры.Мы уже рассмотрели этот тип преобразования переменного тока в постоянный, используя Transformer в этой статье. И да, мы также можем преобразовать высокое напряжение переменного тока в низкое напряжение постоянного тока, без использования трансформатора, это называется Бестрансформаторный источник питания . Основным компонентом схемы бестрансформаторного источника питания является конденсатор с понижением напряжения или конденсатор с номинальным напряжением X , которые специально разработаны для сети переменного тока. Этот конденсатор с номинальным значением X подключен последовательно к фазной линии переменного тока для снижения напряжения.Этот тип трансформаторного блока питания называется Capacitor Power Supply .

X-Rated Capacitor

Как уже упоминалось, они соединены последовательно с фазовой линией переменного тока для понижения напряжения, они доступны в 230 В, 400 В, 600 В переменного тока или выше.

Ниже приведена таблица для выходного тока и выходного напряжения (без нагрузки), различных значений конденсаторов с номинальной характеристикой X:

Код конденсатора

Значение конденсатора

Напряжение

Текущий

104k

0.1 мкФ

4 в

8 мА

334k

0,33 мкФ

10 В

22 мА

474k

0,47 мкФ

12 В

25 мА

684k

0,68 мкФ

18 v

100 мА

105к

1 мкФ

24 В

40 мА

225k

2.2 мкФ

24 В

100 мА

Выбор конденсатора падения напряжения важен, он основан на реактивном сопротивлении конденсатора и величине тока, который необходимо отвести. Реактивное сопротивление конденсатора определяется по формуле:

X = 1 / 2¶fC

X = Реактивное сопротивление конденсатора

f = частота переменного тока

C = Емкость X номинального конденсатора

Мы использовали 474k означает 0.Конденсатор на 47 мкФ и частота AV-сети составляют 50 Гц, поэтому Reactance X составляет:

X = 1/2 * 3,14 * 50 * 0,47 * 10 -6 = 6776 Ом (приблизительно)

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Так вот как рассчитывается реактивное сопротивление и ток.

Описание схемы

Цепь проста, конденсатор сброса напряжения 0,47 мкФ подключен последовательно с фазной линией переменного тока, это неполяризованные конденсаторы, поэтому он может быть подключен с любой стороны.Резистор на 470 кОм подключен параллельно конденсатору, чтобы разрядить накопленный ток в конденсаторе, когда цепь отключена, что предотвращает поражение электрическим током. Это сопротивление называется Сопротивление Bleeder .

Дополнительный мостовой выпрямитель (комбинация из 4 диодов) был использован для удаления отрицательной половины компонента переменного тока. Этот процесс называется Исправление . И конденсатор 1000 мкФ / 50 В был использован для фильтрации , означает удаление пульсаций в полученной волне.И, наконец, стабилитрон 6,2 В / 1 Вт используется в качестве регулятора напряжения. Как мы знаем, эта схема обеспечивает ок. Выход 12 В (см. Таблицу выше), поэтому этот стабилитрон регулирует его до прибл. Напряжение 6,2 В и обратный ток. Также можно использовать другое значение стабилитрона для требуемого напряжения, например, 5,1 В, 8 В и т. Д. Светодиод подключен для индикации и тестирования. R3 (100 Ом) используется в качестве ограничителя тока.

Используйте номинальный резистор мощностью 1 Вт или выше (5 Вт), особенно резистор R4.В противном случае он сгорит через некоторое время. Они обычно толще обычного резистора. Ниже приведена схема для резисторов разного типа:

Преимущества этого бестрансформаторного источника питания по сравнению с трансформаторным источником питания заключаются в следующем: он экономичен, легче и меньше.

Примечания

  • Сделайте это на свой страх и риск, крайне опасно работать с сетью переменного тока без надлежащего опыта и мер предосторожности.Будьте предельно осторожны при построении этой схемы.
  • Не заменяйте конденсатор X-Rated обычным, иначе он разорвется.
  • Если требуется большее выходное напряжение и выходной ток, используйте другое значение конденсатора X-Rated в соответствии с таблицей.
  • Используйте только номинальный резистор мощностью 1 Вт или выше (5 Вт) и стабилитрон.
  • Предохранитель на 1 ампер также можно использовать перед конденсатором с номинальным напряжением Х, последовательно с фазовой линией, в целях безопасности.
  • Регулятор напряжения
  • IC также может использоваться вместо стабилитрона для регулирования напряжения.
.

Смотрите также

Поиск